
www.manaraa.com

Int J Adv Manuf Technol (2007) 33: 354–364
DOI 10.1007/s00170-006-0462-1

ORIGINAL ARTICLE

Chi-Yu Huang . Alan Holt . John Monk . Kai Cheng

The application of dependency management in an integrated

manufacturing network framework

Received: 20 July 2005 / Accepted: 15 December 2005 / Published online: 23 May 2006
# Springer-Verlag London Limited 2006

Abstract Research into the effectiveness and performance
of the mobile agent (MA) technology as a means of
managing a domain of manufacturing devices has been
conducted. However, it has been shown that MAs are not
without their scalability issues. A strategic agent travelling
algorithm will bring performance improvement as it allows
agents to identify the best migration path in order to
minimise the total expected time of searching for the
desired information. The applications of process-driven
dependency management along with MA techology are
examined as methods for optimising the efficiency of
retrieving critical information in the manufacturing envi-
ronment. An integrated framework is developed to
investigate the alignment of network management para-
digm to the strategic management decision.

Keywords Dependency management . Mobile agent
itinerary . Process-driven

1 Introduction

The development of information technology (IT) leads to
an increase in use of heterogeneous networking products in
manufacturing enterprise and business environments. In
our previous research, a strategic framework based on the
mobile agent (MA) technology at the network management
level was proposed [1]. The major purpose of the research
was to examine how the decision makers and managers can
effectively schedule and optimise the enterprise’s strategies
through the monitoring of network activities. Networks,
along with the appropriate software, give manufacturing
devices the ability to communicate, which in turn enables
them to be managed from a remote location. However, in a
distributed system, networks introduce delays (transmis-
sion delays, propagation delays, etc.) that can directly
affect any management system’s ability to exercise
effective control of a manufacturing environment.

The MA technology was examined in [1] as a means of
improving the efficiency and performance over that of
traditional network management paradigms, such as simple
network management protocol (SNMP) and manufacturing
automation protocol (MAP). MAs are expected to have the
intelligence to decide when to move, as well as the
underlying infrastructure to support and execute any
request. By moving to the location of an information
resource, the MA can search the resource locally, which
eliminates the need for the transfer of intermediate results
across the network and reduces end-to-end latency.
Nevertheless, it is still challenging to determine the
itinerary strategy at the time the agent is instantiated,
especially in a dynamic environment. Hence, what is
required is a strategic travelling algorithm that allows an
agent or a small group of cooperating agents to identify the
best migration path in order to minimise the total expected
time of searching for the desired information.

This research will investigate whether or not the
dependency relationships between the manufacturing pro-
cess and its associated manufacturing resources have the
potential to bring any productivity benefits. The discus-
sions will focus on behavioural comparisons of the mobile

C.-Y. Huang (*)
DL Consulting,
Hamilton, New Zealand
e-mail: chi@dlconsulting.co.nz

A. Holt
Department of Computer Science and Mathematics
University of Waikato,
Hamilton, New Zealand
e-mail: aholt@cs.waikato.ac.nz

J. Monk
Faculty of Technology, The Open University,
Milton Keynes, UK
e-mail: jmonk@open.ac.uk

K. Cheng
Faculty of Information and Engineering Systems
Leeds Metropolitan University,
Calverley Street,
Leeds, UK
e-mail: K.Cheng@leedsmet.ac.uk



www.manaraa.com

agent paradigm in practical use. The performance param-
eters considered are the data generated in the network
traffic in a domain between the management station (or
platform) and managed devices as well as the overall delay
in retrieving useful operational variables as they are
significantly affected by their behaviour.

Manufacturing network systems can be described as
“safety-critical” systems. Implementing a change in such
systems can be complex and difficult, and so experimenta-
tion with a real system can be both costly and risky.
Therefore, analytical models are used in this paper to
examine and evaluate the proposed framework.

The structure of this paper is organised as follows.
Section 2 will discuss the travelling behaviour of an MA
and its challenges. Section 3 investigates the concepts of
dependency management and discusses its role in this
research. In Section 4, a scaleable platform-based network
architecture designed to cope with the dynamics of the
manufacturing environment is presented in detail. A
number of analyses regarding the dependency applications
in the proposed framework are conducted and demonstrat-
ed in Section 5.

2 Travelling behaviour of the mobile agent

2.1 Resesarch in agent travelling algorithms

An MA is not bound to the system from which it is
initiated. It is often required to travel between multiple
managed nodes or computer nodes in order to perform its
tasks. MAs are expected to have the intelligence to decide
when to move, as well as the underlying infrastructure to
support and execute any request. Research on agent
travelling algorithms includes the highest probability first
search (HPFS) algorithm [2] and the travelling agent
problem (TAP) [3, 4].

Chen [2] applies the HPFS algorithm in a mobile
computer environment. The algorithm is used to estimate
the time spent on locating the target agent. The probability
is a value which shows the possible chance that the agent
might stay. According to their research results, Chen found
out that a strategy of querying to the server with the highest
probability among the servers will consequently consume
less search time and network overhead than blind search
strategies.

Moisumi [4] and Brewington [3] propose a travelling
agent problem (TAP) which is based on the analogy of the
travelling salesman problem (TSP) [5]. The algorithm is
mainly used to decide the sequence of machines to visit in
order to minimise the total expected time of searching for
the desired information. A known probability representing
the possible chance of being able to complete the agent’s
task successfully was introduced. Once the required
information is found, the agent will finish its journey
instantaneously and return to the site where it was initiated.
All these research works focus on finding a managed object
(or objects) on a particular managed device in a domain of
devices.

2.2 Research synopsis

In this paper, the research is concerned with monitoring the
state of a manufacturing system which is reflected by the
managed objects (manufacturing devices or recourses),
dynamically changing with time, of every device in the
system’s domain. Each of the devices will vary in
importance regarding their contribution to supporting the
system. Accordingly some devices will have higher
dependency than others and will play a more crucial role
in maintaining the overall manufacturing system. The
problem to be addressed in this paper, therefore, is that of
sampling managed objects at a sufficient rate in order to
capture data such that it accurately reflects the current state
of the system. An application-oriented strategy applied to
this scenario will be discussed in this research.

3 Dependency management

Dependency management involves specifying the relations
between processes as well as those related manufacturing
resources which are used to implement those operations. In
this research, the term “dependencies” represents the
interrelationship of resources or information between
activities in either a physical or a logical way. As the
information is normally dynamic and can change over the
lifetime of the dependency, a dependency management
framework has to offer flexibility to change dependency
bindings in real-time. The information may come from the
best knowledge of the process designers and engineers or
heuristic experience, but this can not present the dynamic
nature of the dependency. Much information is available in
the literature describing the use of dependency models in
various areas [6–8].

In this paper, we will demonstrate a model to retrieve
dependency information from the manufacturing system in
a real-time and dynamic manner.

3.1 Applications of dependency management

In the manufacturing environment, a manufacturing system
includes a set of machines or resources performing
different operations in order to implement manufacturing
processes. In the field of service application management,
an important requirement is the ability to perform effective
fault and performance management within a networked
environment. It is the capacity to understand how faults
occurring in the resources of one layer affect the working of
resources in another layer. Several research works have
utilised the concept of dependency management in order to
state the capabilities of applications service management
and reveal its problem issues [7–11]. It is commonly
believed that once a dependency between related compo-
nents exists, the root cause may be tracked down to a
resource on which a certain service is dependent. Hence, It
is expected to detect system problems, isolate their root
causes and identify proper repair procedures.

355



www.manaraa.com

Analysis of the dependency of business and manufactur-
ing systems can be found in [6, 12]. For example, in Jin [6],
an agent-based framework - ActivePROCESS - is proposed
to capture work dependencies between activities at the
engineering level. This includes the clear definition of
process activities, their interrelationships, responsibilities
and performance requirements. Kim [12] discusses how the
managing dependencies among interdependent elements
within an organisation can help to improve business-
process management.

So far, little research has been done into analysing the
impact of system-level resources, while changes to the pro-
duction plan or customer requirements occur at the
enterprise-level, especially those elements which cross
systems and domain boundaries.

In this research, we investigate the dependencies
between manufacturing processes and resources, and
explore how their inter-dependencies may affect the overall
enterprise strategy.

3.2 Dependency management in the enterprise
manufacturing environment

Typically, the required information or data may be located
at a single domain or may be spread across different
domains. Applied to the business and manufacturing
environment, it is clear that these relationships can be
defined as:

– Intra-organisation dependencies: These are dependen-
cies occurring among functional business processes
within the same organisation. For example, sales
activities normally associate with inventory, produc-
tion and manufacturing planning activities

– Inter-organisation dependencies: These dependencies
are between functional processes across boundaries
between partner companies. Such as the activities
occurring within a supply chain network and out-
sourcing companies

In the manufacturing environment, a system consists of a
multitude of functions which are installed on different
computers and interconnected by a complex computer
communication technology. This system supports the
organizational planning and scheduling, manufacturing
processes control and monitoring for producing goods and
services, people for performing tasks, strategic and
technological planning. Here, the information flow has to
be controlled in a precise manner in order to provide the
customer with a high quality product and good customer
service. These entities are highly related and interdependent
on each other. The major focus of this research is the
analysis of the processes view.

For a certain business or manufacturing plan, several
designed processes are required. The definition of
dependencies is used to identify the relations between
processes as well as the related work resources used to
implement these processes. In order to accomplish a
manufacturing process, various activities are normally

needed. If a process requires a particular activity, it is said
to be dependent on that activity. If more than one process
depends on the same activity, each dependent component
has its own dependency.

Transferring the above scenario to the level of network
management, those work components (for example, tools
or resources) can be regarded as networked elements. For a
manager to achieve effective and efficient coordination
with network monitoring, it is helpful if the dependencies
between work components and processes are well under-
stood. A proposed network management platform particu-
larly applying to the manufacturing environment will be
discussed in detail Section 4.

3.3 The challenges of dependency management

Dependencies have a certain set of properties. One of the
most important of these is that they are dynamic and have
the ability to change over the lifetime of the dependency.
To perform dependency management, the dependencies
must be accessible to management applications. For
analysing or demonstrating process dependencies, the
available processes and their dependencies must be visible
from the outside. During execution, the dependencies of
the process can be variable. Relevant components may
become unavailable, migrate or be upgraded. A process
must have the capability to change its own bindings in
order to respond to exceptional conditions. A dependency
management framework therefore has to offer flexibility to
change dependency bindings at execution time.

3.4 Mechanisms for dependency analysis

Since it appears difficult to identify the interactions
between the various functions and processes within a
manufacturing system, there are numerous techniques for
modelling manufacturing processes and the management
of their dependencies, which are described as below:

– Virtual clustering mechanism: This method groups
similar records together under the same category.
Applying the clustering approach to the distributed
manufacturing environment, manufacturing processes
and subtasks can be clustered into various domains, in
which correlated functions will probably be clustered
together. Thus, this method can identify different
domains for an abstract high level overview of the
whole manufacturing enterprise or business. Virtual
clustering is a dynamic, emergent function-driven
group behaviour of the multi-agent system in which
agents can dynamically participate in a specific
problem-solving cluster (or clusters). In general, there
is prior information available about the data (for
example, statistical model, historical information, etc.)
so that the decision maker can make a few assumptions
about the data. The variety of techniques for
representing data, measuring proximity (similarity)

356



www.manaraa.com

between data elements, and grouping data elements
into clusters has attracted a lot of attention in the
research field [13–15].

– Dependency graph: The concept of dependency graphs
is based on the theory of graphs. The basic premise
underlying the dependency graph is to model a system
as a directed acyclic graph, in which nodes represent
system components or resources (for example, ser-
vices, applications, software, hardware and networks)
and weighted directed edges between nodes represent
their dependencies. The strength of dependencies can
be denoted as strong (S), medium (M) and weak (W)
against the edge between two nodes. Bagchi [9] and
Kar [16] introduce this method to show how an
application service is dependent on lower layer
services/resources in a networked manufacturing en-
vironment. This graphical representation is based on
static dependency analysis techniques. Dependency
graphs provide a straightforward way of identifying
possible root causes of an observed problem - one must
simply trace the dependency edges from the problem-
atic node (or entity) to discover all of the potential root
causes. The details of a dependency graph can be
constructed and stored in a dependency database. By
querying the dependency database, an application
agent is able to construct a list of all the resources on
which a certain manufacturing process depends. The
end result is that each working process has associated
with it a list of resources in the physical layer that
provides the basis for implementing that process
service.

– Dependency structure matrix: The dependency struc-
ture matrix (DSM) is also known as the design
structure matrix, which was introduced by Steward in
1981 and has been applied to several studies [17–19].

In this paper, we will use the acronym DSM to refer to
dependency structure matrix. DSM represents and
visualizes relations and dependencies between tasks
and activities, components and subsystems, and among
people and teams [19]. By reading across a row of the
matrix, various interactions can be observed through
the cell contents corresponding to each cross-refer-
enced column. It provides an overview of the different
kinds of relationship, depending on what variables are
considered. Danilovic and Borjesson [20] recognises
that the matrix representation makes it possible to
create a complete model of information flow and
dependency analysis in describing and analyzing
complex projects. It allows tasks to be either coupled
or independent. The traditional DSM methodology is
based on using square-designed matrices. However,
some researchers evidently use a rectangular matrix
layout [17, 20]. Each cell can be given a marked or
numerical value, termed points of interaction (POI),
indicating a task dependency or their importance.
These numerical values can represent the degree of
dependency between two variables or elements.

3.5 Discussions of dependency models

A number of mechanisms used in capturing dependency
details are examined above. However, the method of virtual
clustering is complicated due to differences in assumptions
and contexts between different user groups. Furthermore,
with this method, it is not easy to express the degree of
dependencies between correlated elements.

Similarly, the method of dependency graph can not
explicitly express the degree of correlated components. It
only provides a static view of the overall system, and in an

Fig. 1 An example of a pro-
cess-resource dependency struc-
ture matrix

357



www.manaraa.com

environment with a large number of counted processes and
resources, the resulting dependency graph would be
complex and inflexible. Therefore, the method of DSM
was chosen at the pre-implementation stage of our analysis.

In this research, a rectangular DSM is used for analysing
the inter-dependency of overall manufacturing processes,
their associated operations and working resources. The
numerical system is adopted in order to reveal the
individual dependency of the operations on a certain
process. This process-resource DSM provides an insight
into resources that interact with each other and how those
processes are affected. A simple example is demonstrated
in Fig. 1.

Figure 1 shows a sample process-resource DSM, a 4� 7
matrix. Theoretically, this matrix is built upon 28 POI.
Each of these POIs can contain any type of relation or none
at all. Manufacturing processes appear identically labelled
in rows, whereas the designed resources arranged in the
columns of the matrix. pði; jÞ , shown in the cell, simply
identifies and represents the perceived level of dependency,
where 0 � pði; jÞ � 1. The value of pði; jÞ regarding the
interrelationship between a manufacturing processes i and
associated resource j can be obtained. For example, by the
calculation of the required utilisation of the resource in
order to execute a particular process (or processes). It can
be retrieved from the historical log files or dynamically in
real-time. The bigger the number, the higher the depen-
dency represented. If some rows contain a lot of identified
POIs, this obviously shows that this process may have a
serious impact on the overall system under analysis. In
some cells, multiple pði; jÞ could represent simultaneously
perceived dependencies from different points of view. This
means that different interpretations were defined by people
who were asked to identify and estimate the impact of

identified dependencies. This complex area, however, lies
beyond our research scope.

In the above section, a number of approaches are
discussed which can be applied to dependency manage-
ment in a process-driven manufacturing environment.
Although our research interest is not in evaluating the
efficiency of these approaches, this paper will demonstrate
the behaviour of retrieving dependency details in a
dynamic manner and the use of these dependency details
to facilitate company decision-making.

4 A scalable manufacturing enterprise agent platform

In our previous research, we proposed a scalable and
flexible integrated framework to investigate how collab-
orative high-level decision-making procedures can be
optimized by considering the real-time information re-
trieved at shop-floor level. This information may come
from the managed components in the managed physical
layer such as robots, machine drilling units, cell controllers,
numerical controllers, and programmable logic controllers
which are interconnected through computer networks. The
proposed framework is shown in Fig. 2.

4.1 Dependency applications

In this proposed framework, a mobile agent platform
(MaP) architecture is developed in the management
platform layer. The MaP is a software package or platform
for the development and management of mobile agents
(MAs). In addition, the MaP is mainly concerned with the
processing of management data and information collection,
providing key management services like monitoring and

Fig. 2 The view of an inte-
grated manufacturing manage-
ment framework and agent
platform

358



www.manaraa.com

controlling. The below will describe the functionalities of
the MaP in details. This paper will focus on the discussion
of the dependency application in the proposed framework.

– Application dependency analysis. This dependency
application mainly provides details of relevant re-
sources accompanied by their degree of dependencies
to the specific process. We assume if the dependency
between a device (resource) and the process is high, it
means that the process is heavily reliant on (tightly
coupled to) the device. Otherwise, the associations
(relationships) between the process and resources are
loosely coupled. The respective dependency metric
will be stored in the local management information
base (MIB) and then be sent to the FilteredResMIB in
the later stage. The FilteredResMIB is generated in the
highest layer of the framework and then turn to a
directory service at this layer.

– Agent manager (master). The manager acts as the
master and can launch mobile agents (slaves); identify
the travelling itinerary of MAs; monitor and control the
network situation; and display their results.

– Mobile agents (slave agents). MAs are software
program objects with a unique ID, capable of migrating
between hosts where they execute as separate threads
and perform their specific management tasks.

– Directory service. A directory is essentially a special-
ised, server-based database and provides a lookup
function. In this framework, two directory services are
defined. One is used to store the domain information,
whereas another stores dispatched agents’ details.

– Kernel service handler. The kernel services implement
“housekeeping” operations and management services
including log, alarm, security, state monitoring, and
event/trap services. The details of these services are
described in Stamatelopoulos [21].

– Virtual physical domain agent platform (VPDAP). At
each physical domain, a VPDAP is designed for
handling certain key management services such as
agents’ authentication and issues concerning the
processing of the management data and information
collection, monitoring and controlling etc. Further-
more, it will reply to the agent manager with detailed
and summary information.

– Local MIB. It is an associated local MIB in the
managed physical layer. The local MIB contains all the
detailed information that concerns the respective
resource. For example, it stores effective values of
the resource parameters, resource status, resource
capacity, usage and dependency values in the manu-
facturing system.

This is a brief outline of the MaP functionality which is
part of our proposed framework. A more detailed
description with respect to the holistic framework can be
found in [1].

4.2 Dependency information

In the manufacturing system, each managed manufacturing
resource can normally be used to support one or more
manufacturing processes. Thus, there will be multiple
dependencies for a certain manufacturing resource. In order
to cope with this complexity, in the proposed framework,
we specifically designed a ManuMIB [1] (manufacturing
management information base) in which the dependency
metric can be stored. It is based on the assumption that for
each local MIB, there is a table recording the details about
the process or processes executed on each individual
manufacturing resource and its associated dependency. We
suggest that the dependency metric is a definable property
and will vary according to the manufacturing scenario. For
example, the “utilisation” indicates the proportion of the
overall capacity that has been used to execute a certain
operation. A resource with a high utilisation will have a
corresponding high dependency. This example explains a
fairly simple relationship between a state variable (resource
utilisation) and dependency. However, dependency metrics
could be based upon much more complex formulae
(possibly determined by the human manager/engineer).

The example in Fig. 3 shows a partial manufacturing
process flow for the plug assembly [22]. It demonstrates

Fig. 3 An example of manufacturing processes with associated
resource-process local ManuMIB

359



www.manaraa.com

the process flow from inspecting the material to the lathe
processing stage. As can be seen from the figure, there is a
local MIB for each resource which records the details about
the associated processes, the resource’s physical location,
setup time, work hour, make time, status etc.

This example suggests that each manufacturing resource
may be used to support one or more processes (operations).
The value of dependency can then be calculated based
upon the dynamic behaviour of the resource and its
utilisation. The information from these local MIBs can be
stored in a central ManuProc MIB. The representation of
ManuProc table is shown in the MIB format below:

ManuProcTable OBJECT-TYPE

SYNTAX SEQUENCE OF ManuProcEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“The (conceptual) table of processes contained
by implementing manufacturing projects”

ManuProcEntry OBJECT-TYPE

SYNTAX ManuProcEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“An entry for a single process on the
manufacturing system”

INDEX {ManuProcIndex}
::={ManuProcTable 1}

ManuProcEntry::=
SEQUENCE {

// Unique Process ID
manuProcID DisplayString,
// Process Start Time format DDMMYYHHMM
[SS]

manuProcStartTime UTCTime,
manuProcOperation SEQUENCE OF
{
// Unique Operation ID
manuProcOperID DisplayString,
// The resource ID used to support
// the operations
manuProcResID DisplayString,
// The resource description.
manuProcResDesc DisplayString,
...

// The physical location of this resource.
manuProcResLocation IpAddress,
// The current status for the resource.
manuProcResStatus Status,
....

// The dependency for the process
// dependent on that resource.
manuProcResDependency REAL,

}

// Process finish time, format DDMMYYHHMM
[SS].
manuProcEndTime UTCTime,
// Process status
manuProcStatus Status,

}

A more completed vision of this proposed framework
can be seen in [1]. The status of an individual dependency
can vary over its lifetime, therefore, retrieving dependency
information must be dynamic and in real-time. In order to
perform effective dependency management, dependencies
must be accessible to management applications. Moreover,
management applications can utilise these dependency
details to monitor and control the manufacturing resource
more effectively and efficiently.

5 Analyses of dependency applications in the proposed
framework

In this analysis we consider a mobile agent that performs a
(trivial) management function, that is, a management
station S dispatches an MA that visits all the devices in
a managed domain. From each device ri, where 1 � i � k,
it retrieves a set of managed objects. After visiting the final
managed device rk the MA returns to S . The notation
below describes the travelling behaviour of the mobile
agent. Oi is the set managed objects on each managed
device that need to be retrieved from ri :

Oi ¼ foi1; oi2; :::; oivg (1)

where v is the number of managed objects to be retrieved
from the device. The network transactionfri�1; ri : Oig
denotes the retrieval of the set of objects Oi from ri and
represents the migration of the MA from managed device
ri�1 to ri . The MA itinerary for the retrieval of managed
objects from the domain of managed devices is expressed
as:

O
!

MA ¼ ffS; r1 : O1g; fr1; r2 : O2g; :::;
frk�1; rk : Okg; frk; S : OSgg;

(2)

where fS; r1 : O1g represents transmission of the initial
mobile agent from the management station to the first
managed object and frk; S : OSg represents the return of
the MA (with all k � v lots of managed objects ) from the
last managed device ri to the management station S.

The events denoted by the terms in O
!

MA occur
sequentially, that is the event fri; riþ1 : Oiþ1g does not
start until the event fri�1; ri : Oig has completed.

The function dMAðφ; s; iÞ is the network delay incurred
by an MA travelling from the ith device to the iþ 1th

360



www.manaraa.com

device (in order to retrieve the data from v managed
objects stored on device i ):

dMAðφ; s; iÞ ¼ φþ maINIT þ maΔðiÞ
s

(3)

The term maINIT is the initial size of the MA dispatched
from the management station. In this particular scenario the
MA consists of code only and (as yet) no data. We choose a
value maINIT ¼ 5 Kbytes, which is based on values used
previous MA performance analysis research carried out in
[23]. The function maΔðiÞ returns the amount of data the
MA has collected up to and including the ith device and is
given by the expression:

maΔðiÞ ¼ 4vi (4)

The function maΔðiÞ is implemented specifically to our
application in that v managed objects are retrieved by the
MA. The number of managed objects is arbitrarily set to
v ¼ 10 and each object is assumed to be a 4 byte integer
(thus the size of the MA increases by 40 bytes each time it
visits a managed device). The parameters φ and s are the
network propagation delay and network speed respectively.
The expression is implemented this way so that it can be
used generically to model both local area (LAN) and wide
area (WAN) network environments. For example if we say
that φ ¼ φLAN and s ¼ sLAN, where φLAN and sLAN are the
LAN propagation delay and the LAN speed respectively,
then dMAðφLAN ; sLAN ; iÞ yields the network delay for an
MA being transmitted from device i to device iþ 1 over a
local area network. Similarly dMAðφWAN ; sWAN ; iÞ repre-
sents the WAN case. The total time incurred from when the
management station dispatches the initial mobile agent to
reception of the MA from the last device in the domain k is
given by the function:

DMAðφ; s; kÞ ¼
Xi¼k

i¼0

dMAðφ; s; iÞ (5)

We set the parameter k ¼ K , where K is the number of
managed devices in the domain.

In our delay model we assume TCP (over IP) is the
transport protocol that MA uses. However, we do not

explicitly consider protocol overhead, such as packetisa-
tion, connection setup and termination or slow-start.

In this scenario, the management station is attached to a
local LAN, while the managed devices are connected to a
remote LAN. Both LANs are connected via a WAN using
two (IP) routers (as shown in Fig. 4).

When the management station dispatches the initial MA,
it is transmitted across the local LAN (to which the
management station is attached) to the first managed device
on the remote LAN.

After visiting the first managed device, the MAvisits the
remaining devices in the management domain. All
transactions between managed devices are entirely con-
tained within the remote LAN environment to which they
are connected. Upon visiting the last device, the MA
returns to the management station S when it has completed
its retrieval of managed objects Ok on device rk .

When an MA is transmitted between the management
station and a managed device, it incurs two LAN
propagation delays (one for the local and one for the
remote) and one WAN propagation delay, So the total end-
to-end propagation delay is given by:

φend ¼ 2φLAN þ φWAN (6)

Communication between management station on the
local LAN and managed devices (first and last) on the
remote LAN is rate limited by the speed of the WAN sWAN ,
so the delay incurred sending the initial MA is given by
dMAðφξ; sWAN ; 0Þ. Similarly, the time taken to send the last
MA is dMAðφξ; sWAN ; kÞ.

S RouterRouter

r2
r1

r3

rk

...
local LAN remote LANW AN

Fig. 4 Wide area network

de
la

y 
(s

ec
on

ds
)

domain size

0.2

1601208040

1

0.8

0.6

200

0.4

Fig. 5 MA delay for domain size 1 � K � 200

361



www.manaraa.com

Assuming router delay is negligible, the total MA delay
is:

ξMAðkÞ ¼ dMAðφend; sWAN ; 0Þþ
dMAðφend; sWAN ; kÞþ
DMAðφLAN ; sLAN ; 1; k � 1Þ

(7)

In order to carry out an analysis of MA performance, we
need to set some network parameters. AWAN propagation
delay of φWAN ¼ 20ms was chosen. The LAN propagation
delay is φLAN ¼ 17μs based on [24]. The WAN speed is
sWAN ¼ 200 Kbytes/s (approximate speed in bytes/s of a
2.048 Mb/s E1 link) and the LAN speed is sLAN ¼ 1
Mbyte/s (approximate speed in bytes/s of a 10 Mb/s
Ethernet). The graph in Fig. 5 shows the end-to-end delay
ξMAðKÞ for an MA to visit a domain for managed devices
1 � K � 200.

In this analysis it was assumed that managed devices
have of uniform dependence, thus an MA will visit each
managed device the equal frequency.

We continue this analysis based upon a domain of
managed devices having non-uniform dependencies. It is
assumed that the dependencies are distributed according to
a Zipf distribution. Zipf distributions were used to
characterise the use of words in natural language [25].
That is the popularity of words plotted against their
frequency of use was found to be distributed as a power
law. The presence of this phenomenon has been discovered
in many areas of research. One area in particular, that has
been widely reported, is the relationship between popular-
ity of Web sites and their access frequencies [26]. While we
can present no evidence that such a relationship exists
between the ranking of a managed device and its depen-
dency metric for a particular manufacturing process, we
argue it is a reasonable assumption to make. Though we

accept that dependencies associated with managed devices
may be arbitrary and not actually follow a Zipf distribution,
we simply make the assumption in order to generate
relative frequency figures for the managed devices within a
cluster in order to apply our analysis.

For a domain of managed devices, if we place the
managed devices in rank order from highest to lowest
dependency, then the distribution follows the power law j�y

where and y is constants. We set and define the function
which gives the dependency value of the jth most
dependent managed device in domain:

ρðy; jÞ ¼ j�y (8)

Given that the managed device with the lowest depen-
dency (kth) needs to be visited at least once by an MA in
any given polling period, then the visit frequency of any
managed device j can be calculated:

f ðy; j; kÞ ¼
�
ρðy; jÞ
ρðy; kÞ þ 0:5

�
(9)

where the floor function x , yields the largest integer not
greater than x (we add 0.5 for rounding). Clearly, if the MA
visits every managed device in the domain at the frequency
of the managed device with the lowest dependency, then
the data collected will not reflect the state of higher ranked
managed devices. We call this strategy 0, which despite
keeping MA network traffic (and delays) to a minimum, is
an inadequate method for collecting managed objects from
higher dependency managed devices at the appropriate
frequency. One solution to this would be to visit all k
devices at the frequency of the highest ranked dependent
device (rather than the lowest). We refer to this sampling
method as strategy 1. The effect of deploying strategy 1 is
that the management station sends out f ðy; 1; kÞ MAs,

160120 200

8

8040

14

6

0

2

12

10

4

strategy 2

domain size

strategy 3

de
la

y 
(s

ec
on

ds
)

strategy 1

Fig. 6 A delay for strategies 1, 2 and 3, where 1 � K � 200 for
y ¼ 0:3

strategy 2

y

strategy 3

de
la

y 
(s

ec
on

ds
)

strategy 1

0
0.60.40.2 0.3

100

60

0.1

80

0.5

120

40

0.7

20

Fig. 7 MA delays for strategies 1, 2 and 3 for a domain size of
K ¼ 100 and 0:1 � y � 0:7

362



www.manaraa.com

rather than f ðy; k; kÞ MAs (in strategy 0), yielding an end-
to-end delay f ðy; 1; kÞ � ξMAðkÞ.

A second strategy (which we call strategy 2) would be
for the management station to send out one MA
programmed to visit every managed device in the domain
before returning to the management station. With strategy
2, the MA delay is given by ξMAðk � f ðy; 1; kÞÞ:

A possibly more efficient strategy, however, would be to
visit managed devices at a frequency relative to its
dependency. We call this strategy 3. With this strategy,
the MA has to make a total of Fðy; kÞ visits to managed
devices, where:

Fðy; kÞ ¼
Xj¼k

j¼1

f ðy; j; kÞ (10)

For this strategy, the end-to-end delay is ξMAðFðy; kÞÞ.
The graph in Fig. 6 shows the MA delays for all three
strategies with k ¼ K (where 1 � K � 200 ) and y ¼ 0:3.
Strategy 1 outperforms strategy 2, primarily due to the
growth of the (single) MA making a high number of
(repeated) visits to managed devices. Strategy 1 caps MA
sizes by sending multiple MAs that make a lower number
of visits. Even though multiple MAs that have to be
dispatched by the management station, delays are sig-
nificantly lower. This is related to the results in [1] where it
was shown that methods of clustering could bring about
performance gains in MA performance. However, strategy
3 yields the lowest performance because the frequency of
visits to managed devices is proportional to their dependency.

Figure 7 shows the MA delays for: f ðy; 1Þ � ξMAðKÞ;
ξMAðK � f ðy; 1;KÞÞ and ξMAðFðy;KÞÞ , where K ¼ 100
and 0:1 � y � 0:7 . It can be seen that, particularly for high
values of y it is imperative to use strategy 1, or strategy 3.
While strategy 3 yields the lowest delay, it would require
MAs with a greater degree of sophistication. This would
mean the MAs implementing strategy 3 would need more
code and would therefore be larger in size. It would also
mean more overhead with regard to processing, a factor we
do not take into account in this analysis, but one that is
likely to have a significant effect on delay.

6 Conclusions and future work

Contemporary manufacturing enterprises are facing ever
increasing challenges. These challenges have led to a
growing expectation that modern manufacturing enter-
prises should collaborate increasingly with their customers,
suppliers and competitors in order to produce a supply
chain. Organisations need to deal with a range of processes
and activities, including the management of production
scheduling, order processing, new product design, inven-
tory management, warehousing, customer services and
total quality control. In order to integrate these processes
and activities, the manufacturing enterprise needs to rely on

intensive information technology (IT) and networking
techniques. An integrated manufacturing enterprise frame-
work based on mobile agent technology brings flexibility
and scalability to manage such a complex manufacturing
networking environment. However, performance improve-
ments can be achieved if mobile agent methods are
facilitated strategically.

A process-driven perspective has been adapted to
analyse a manufacturing environment because a manufac-
turing system consists of highly interrelated elements or
processes. The management system needs to integrate the
ever increasing number of applications and services with
the corporate manufacturing enterprise’s processes in order
to yield maximum benefits. Therefore, dependency
management was proposed in the field to capture and
analyse work dependencies between processes at the
engineering level and resources on the system level. An
integrated framework connecting dependency applications
is demonstrated in this paper.

We carried out an analysis of certain management
processes which were dependent upon the managed
devices within a domain with varying degrees of depen-
dency. The implication of dependency ranking is that
devices of a higher rank need to be monitored more
frequently than lower ranked devices. If all devices in the
domain are monitored at a frequency according to the
lowest ranked device, then the gathered data will not
accurately reflect the state of the system. On the other hand,
if all of the devices are monitored at a frequency according
to the highest ranked device, then undue load will be placed
on the network. Furthermore, the delays introduced by
unnecessary visits to lower ranked devices may be too great
to achieve the necessary monitoring frequency. Our
analysis shows that if each device is monitored at a
frequency relative to its rank, then significant performance
improvements can be achieved over monitoring devices
uniformly at the frequency of the highest ranked device.

However, we would have to take into account the affects
of the required increases in MA complexity in order to
carry out more sophisticated travel itineraries. Increases in
MA size and CPU consumption could negate performance
gains brought about by reducing frequent visits to low
dependency devices. We argue that such policy decisions
will be based upon the nature of dependency distribution of
devices. That is, for low values of y (assuming a Zipf
distribution) we could consider dependencies to be
distributed uniformly and be serviced by a simple travel
itinerary implemented by strategy 1. However, the
assumption of (approximate) uniformity does not hold as
y increases thus we would consider more sophisticated
travel itineraries.

Implementing a project requires a large set of processes
to work collaboratively. Thus, it becomes extremely
difficult to manage the dependencies between relevant
elements and its supported elements. Thus, a well-designed
decomposition approach for the analysis of manufacturing
processes will bring high accuracy and efficiency of such a
framework.

363



www.manaraa.com

References

1. Huang C (2003) A strategic management framework for
improving performance in a distributed manufacturing enter-
prise environment, Dissertation, Leeds Metropolitan University,
UK

2. Chen W-SE, Leng C-WR (1997) A novel mobile agent search
algorithm. Proc First International Workshop, MA’97, Berlin,
Germany, pp 162–173

3. Brewington B, Gray R, Moisumi K (1999) In: Klusch M (ed)
Mobile agents in distributed information retrieval, in intelligent
information agents. Springer, Berlin Heidelberg New York,
pp 335–395

4. Moisumi K, Cybenko G (1998) The travelling agent problem.
Math Control Signals Syst 14(3):213-232

5. Dakin R (1997) The travelling salesman problem. http://www.
pcug.org.au/dakin/tsp.htm, Accessed date: 31 December 2001

6. Jin Y, Zhao L, Raghunath A (1999) Activeprocess: a process-
driven and agent-based approach to supporting collaborative
engineering. Proc DETC’99-ASME Design Engineering Tech-
nical Conferences, Las Vegas, NA

7. Kar G, Keller A (2001) An architecture for managing
application services over global networks. Proc Twentieth
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (IEEE INFOCOM 2001), Anchorage, AK,
USA

8. Keller A, Kar G (2000) Dynamic dependencies in application
service management. Proc 2000 International Conference on
Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA 2000), Las Vegas, NA, USA

9. Bagchi S, Kar G, Hellerstein J (2001) Dependency analysis in
distributed systems using fault injection: application to problem
determination in an e-commerce environment. Proc 12th
International Workshop on Distributed Systems: Operations &
Management (DSOM2001), pp 151–163

10. Brown A, Kar G, Keller A (2001), An active approach to
characterising dynamic dependencies for problem determina-
tion in a distributed environment. Proc 7th International IEEE/
IFIP Symposium on Integrated Management (IM2001), Seattle,
WA, USA, IEEE Press

11. Hasselmeyer P (2001) Managing dynamic service dependen-
cies. Proc 12th International Workshop Distribution, Systems:
Operations and Management, Nancy France, Oct 2001, pp 141–150

12. Kim H-W (2000) Business process versus coordination process
in organizational change. Int J of Flex Manuf Syst 12:275–290

13. Jain KA, Murty MN, Flynn PJ (1999) Data clustering: a review.
ACM Comput Surv 31(3):264–323

14. Wu J, Cobzaru M, Ulieru M, Norrie D (2000) SC-web-CS:
supply chain web-centric systems. Proc IASTED International
Conference on Artificial Intelligence and Soft Computing
(ASC2000), Banff, pp 501–507

15. Xu Y, Brennan RW, Zhang X, Norrie DH (2000) A genetic
algorithm-based approach to holon virtual clustering. Proc
World Multi-Conference on Systematics, Cybernetics and
Informatics (SCI, 2000), Orland, Florida, USA, pp 380–385

16. Kar G, Keller A, Calo S (2000) Managing application services
over service provider networks: architecture and dependency
analysis. Proc NOMS

17. Sabbaghian N, Eppinger SD, Murman E (1998) Product
development process capture and display using web-based
technologies. Proc IEEE International Conference on Systems,
Man, and Cybernetics, San Diego, CA, USA, 11-14 Oct. 1998,
pp 2664–2669

18. Sullivan KJ, Griswold WG, Hallen B, Yuanfang Cai (2001) The
structure and value of modularity in software design. Proc Joint
International Conference on Software Engineering and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, September, Vienna

19. Svensson D, Malmstrom J, Pikosz P, Malmqvist J (1999) A
framework for modelling and analysis of engineering informa-
tion management systems. Proc 1999 ASME Design Engineer-
ing Technical Conferences, Las Vegas, NA, USA

20. Danilovic M, Borjesson H (2001) Participatory dependence
structure matrix approach. Proc Third Dependence Structure
Matrix (DSM) International Workshop, Massachusetts Institute
of Technology (MIT), Boston, Cambridge, USA

21. Stamatelopoulos F, Chiotis T, Maglaris B (1995) A scalable,
platform-based architecture for multiple domain network
management. Proc IEEE International Conference on
Communications (ICC’95)

22. Chase RB, Aquilano NJ, Jacobs FR (2001) Operations
management for competitive advantage. McGraw-Hill, New
York, USA

23. Adhicandra I, Pattinson C, Shaghouei EM (2003) Using mobile
agents to improve performance of network management
operations. Proc 4th Annual Symposium of Postgraduate
Networking Conference (PGNET’03), EPSRC, Liverpool
John Moores University, Liverpool, UK, 16-17 June 2003,
ISBN: 1-9025-6009-4

24. Partridge C (1994) Gigabit Networking. Addison-Wesley,
Reading, MA, USA

25. Nielsen J (2003) Zipf curves and website popularity. http://
www.useit.com/alertbox/zipf.html, Accessed date: 20th August,
2003

26. Baldi P, Frasconi P, Smyth P (2003) Modeling the internet and
the web-probabilistic methods and algorithms. Wiley, West
Sussex, England

364

http://www.pcug.org.au/dakin/tsp.htm
http://www.pcug.org.au/dakin/tsp.htm
http://www.useit.com/alertbox/zipf.html
http://www.useit.com/alertbox/zipf.html


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	The application of dependency management in an integrated manufacturing network framework
	Abstract
	Introduction
	Travelling behaviour of the mobile agent
	Resesarch in agent travelling algorithms
	Research synopsis

	Dependency management
	Applications of dependency management
	Dependency management in the enterprise manufacturing environment
	The challenges of dependency management
	Mechanisms for dependency analysis
	Discussions of dependency models

	A scalable manufacturing enterprise agent platform
	Dependency applications
	Dependency information

	Analyses of dependency applications in the proposed framework
	Conclusions and future work
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


